skip to main content


Search for: All records

Creators/Authors contains: "Suraci, Justin P."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Energetic demands and fear of predators are considered primary factors shaping animal behavior, and both are likely drivers of movement decisions that ultimately determine the spatial ecology of wildlife. Yet energetic constraints on movement imposed by the physical landscape have only been considered separately from those imposed by risk avoidance, limiting our understanding of how short-term movement decisions scale up to affect long-term space use. Here, we integrate the costs of both physical terrain and predation risk into a common currency, energy, and then quantify their effects on the short-term movement and long-term spatial ecology of a large carnivore living in a human-dominated landscape. Using high-resolution GPS and accelerometer data from collared pumas (Puma concolor), we calculated the short-term (i.e., 5-min) energetic costs of navigating both rugged physical terrain and a landscape of risk from humans (major sources of both mortality and fear for our study population). Both the physical and risk landscapes affected puma short-term movement costs, with risk having a relatively greater impact by inducing high-energy but low-efficiency movement behavior. The cumulative effects of short-term movement costs led to reductions of 29% to 68% in daily travel distances and total home range area. For male pumas, long-term patterns of space use were predominantly driven by the energetic costs of human-induced risk. This work demonstrates that, along with physical terrain, predation risk plays a primary role in shaping an animal’s “energy landscape” and suggests that fear of humans may be a major factor affecting wildlife movements worldwide.

     
    more » « less
  2. null (Ed.)
    Research on the ecology of fear has highlighted the importance of perceived risk from predators and humans in shaping animal behavior and physiology, with potential demographic and ecosystem-wide consequences. Despite recent conceptual advances and potential management implications of the ecology of fear, theory and conservation practices have rarely been linked. Many challenges in animal conservation may be alleviated by actively harnessing or compensating for risk perception and risk avoidance behavior in wild animal populations. Integration of the ecology of fear into conservation and management practice can contribute to the recovery of threatened populations, human–wildlife conflict mitigation, invasive species management, maintenance of sustainable harvest and species reintroduction plans. Here, we present an applied framework that links conservation interventions to desired outcomes by manipulating ecology of fear dynamics. We discuss how to reduce or amplify fear in wild animals by manipulating habitat structure, sensory stimuli, animal experience (previous exposure to risk) and food safety trade-offs to achieve management objectives. Changing the optimal decision-making of individuals in managed populations can then further conservation goals by shaping the spatiotemporal distribution of animals, changing predation rates and altering risk effects that scale up to demographic consequences. We also outline future directions for applied research on fear ecology that will better inform conservation practices. Our framework can help scientists and practitioners anticipate and mitigate unintended consequences of management decisions, and highlight new levers for multi-species conservation strategies that promote human–wildlife coexistence. 
    more » « less
  3. Abstract

    Domestic dogs are the most abundant large carnivore on the planet, and their ubiquity has led to concern regarding the impacts of dogs as predators of and competitors with native wildlife. If native large carnivores perceive dogs as threatening, impacts could extend to the community level by altering interactions between large carnivores and their prey. Dog impacts may be further exacerbated if these human-associated predators are also perceived as indicators of risk from humans. However, observational approaches used to date have led to ambiguity regarding the effects of dog presence on wildlife. We experimentally quantified dog impacts on the behavior of a native large carnivore, presenting playbacks of dog vocalizations to pumas in central California. We show that the perceived presence of dogs has minimal impacts on puma behavior at their kill sites, and is no more likely to affect total feeding time at kills than non-threatening controls. We previously demonstrated that pumas exhibit strong responses to human cues, and here show that perceived risk from human presence far exceeds that from dogs. Our results suggest that protected areas management policies that restrict dogs but permit human access may in some cases be of limited value for large carnivores.

     
    more » « less
  4. null (Ed.)
    Human activity and land use change impact every landscape on Earth, driving declines in many animal species while benefiting others. Species ecological and life history traits may predict success in human-dominated landscapes such that only species with “winning” combinations of traits will persist in disturbed environments. However, this link between species traits and successful coexistence with humans remains obscured by the complexity of anthropogenic disturbances and variability among study systems. We compiled detection data for 24 mammal species from 61 populations across North America to quantify the effects of (1) the direct presence of people and (2) the human footprint (landscape modification) on mammal occurrence and activity levels. Thirty-three percent of mammal species exhibited a net negative response (i.e., reduced occurrence or activity) to increasing human presence and/or footprint across populations, whereas 58% of species were positively associated with increasing disturbance. However, apparent benefits of human presence and footprint tended to decrease or disappear at higher disturbance levels, indicative of thresholds in mammal species’ capacity to tolerate disturbance or exploit human-dominated landscapes. Species ecological and life history traits were strong predictors of their responses to human footprint, with increasing footprint favoring smaller, less carnivorous, faster-reproducing species. The positive and negative effects of human presence were distributed more randomly with respect to species trait values, with apparent winners and losers across a range of body sizes and dietary guilds. Differential responses by some species to human presence and human footprint highlight the importance of considering these two forms of human disturbance separately when estimating anthropogenic impacts on wildlife. Our approach provides insights into the complex mechanisms through which human activities shape mammal communities globally, revealing the drivers of the loss of larger predators in human-modified landscapes. 
    more » « less
  5. Abstract

    When navigating heterogeneous landscapes, large carnivores must balance trade‐offs between multiple goals, including minimizing energetic expenditure, maintaining access to hunting opportunities and avoiding potential risk from humans. The relative importance of these goals in driving carnivore movement likely changes across temporal scales, but our understanding of these dynamics remains limited.

    Here we quantified how drivers of movement and habitat selection changed with temporal grain for two large carnivore species living in human‐dominated landscapes, providing insights into commonalities in carnivore movement strategies across regions.

    We used high‐resolution GPS collar data and integrated step selection analyses to model movement and habitat selection for African lionsPanthera leoin Laikipia, Kenya and pumasPuma concolorin the Santa Cruz Mountains of California across eight temporal grains, ranging from 5 min to 12 hr. Analyses considered landscape covariates that are related to energetics, resource acquisition and anthropogenic risk.

    For both species, topographic slope, which strongly influences energetic expenditure, drove habitat selection and movement patterns over fine temporal grains but was less important at longer temporal grains. In contrast, avoiding anthropogenic risk during the day, when risk was highest, was consistently important across grains, but the degree to which carnivores relaxed this avoidance at night was strongest for longer term movements. Lions and pumas modified their movement behaviour differently in response to anthropogenic features: lions sped up while near humans at fine temporal grains, while pumas slowed down in more developed areas at coarse temporal grains. Finally, pumas experienced a trade‐off between energetically efficient movement and avoiding anthropogenic risk.

    Temporal grain is an important methodological consideration in habitat selection analyses, as drivers of both movement and habitat selection changed across temporal grain. Additionally, grain‐dependent patterns can reflect meaningful behavioural processes, including how fitness‐relevant goals influence behaviour over different periods of time. In applying multi‐scale analysis to fine‐resolution data, we showed that two large carnivore species in very different human‐dominated landscapes balanced competing energetic and safety demands in largely similar ways. These commonalities suggest general strategies of landscape use across large carnivore species.

     
    more » « less
  6. Abstract

    Apex predators such as large carnivores can have cascading, landscape‐scale impacts across wildlife communities, which could result largely from the fear they inspire, although this has yet to be experimentally demonstrated. Humans have supplanted large carnivores as apex predators in many systems, and similarly pervasive impacts may now result from fear of the human ‘super predator’. We conducted a landscape‐scale playback experiment demonstrating that the sound of humans speaking generates a landscape of fear with pervasive effects across wildlife communities. Large carnivores avoided human voices and moved more cautiously when hearing humans, while medium‐sized carnivores became more elusive and reduced foraging. Small mammals evidently benefited, increasing habitat use and foraging. Thus, just the sound of a predator can have landscape‐scale effects at multiple trophic levels. Our results indicate that many of the globally observed impacts on wildlife attributed to anthropogenic activity may be explained by fear of humans.

     
    more » « less